# EE-517 Bio-Nano-Chip Design Student Projects - Guidelines for Final Report

# • Specifications from the passive chip design:

Highlight the required specifications, such as: linear range, sensitivity, limit of detection, and dynamic range, detection method.

#### Bio-CMOS interface:

Appropriately model the bio-CMOS interface taking into consideration the specific application (electrode materials, size, and biofluid of interest). (Original work)

## • Circuit design:

Select (or design, the original design is favored) the most appropriate circuit to meet the requirements (CMOS "transistor level" or op-amp "block/PCB level").

• Figure of the proposed/designed circuitry:

Put at least one figure highlighting the circuit that you have designed (Original work).

### • Results:

Prove that the designed circuit is capable of meeting the passive chip requirements. Simulations are highly appreciated. Alternatives are: analytical calculations with literature support. (Original work)

# • Figure of the obtained results:

Put at least one figure highlighting the result of your simulation/calculation. (Original work)

#### Discussion:

Critically discuss the obtained results (pros/cons of the chosen architecture include a table).

# Novelty:

Identify the key novelty of your proposed active chip.

## • References:

List all the references that have been explored during the circuit design process.

### Supplementary Material:

Simulations, theoretical derivations, and other figures.